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Alzheimer’s disease is an irreversible neurological disease, therefore prompt

diagnosis during its early stage, i.e., early mild cognitive impairment (MCI),

is crucial for e�ective treatment. In this paper, we propose an automatic

diagnosis method, a few-shot learning-based pairwise functional connectivity

(FC) similarity measure method, to detect early MCI. We first employ a sliding

window strategy to generate a dynamic functional connectivity network

(FCN) using each subject’s rs-fMRI data. Then, normal controls (NCs) and

early MCI patients are distinguished by measuring the similarity between the

dynamic FC series of corresponding brain regions of interest (ROIs) pairs in

di�erent subjects. However, previous studies have shown that FC patterns in

di�erent ROI-pairs contribute di�erently to disease classification. To enable

the FCs of di�erent ROI-pairs to make corresponding contributions to disease

classification, we adopt a self-attention mechanism to weight the FC features.

We evaluated the suggested strategy using rs-fMRI data obtained from the

Alzheimer’s Disease Neuroimaging Initiative (ADNI) database, and the results

point to the viability of our approach for detecting MCI at an early stage.

KEYWORDS

Alzheimer’s disease, few-shot learning, automatic diagnosis, smart medical, rs-fMRI

1. Introduction

Recently, artificial intelligence has achieved exciting achievements in many fields

(Zhou et al., 2020; Yu et al., 2021a,b; Wang S. et al., 2022). Benefiting from the progress

of deep learning technology, computer-aided medical tools for neurological diseases

have been developed and applied in a wide range of fields (Wang et al., 2017; Li et al.,

2019; Zhao et al., 2022a). In terms of disease diagnosis, researchers have developed

various auxiliary diagnostic tools (Li et al., 2017; Zhao et al., 2022b,c). For neurological

diseases, however, although deep learning has become a promising method to diagnose

neurological diseases, it is a serious challenge to learn potential features from real data

using deep learning to diagnose neurological diseases, such as autism spectrum disorder

and Alzheimer’s disease (AD).
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As the most common type of dementias in old age,

AD is a neurological disorder that cannot be reversed. It’s

clinically characterized by gradual and progressive decline

in memory as well as other cognitive functions, which

increases the potential safety risks and even threatens

life. Since AD cannot be cured to reverse its progression,

early diagnosis is essential to delay AD progression and

reduce potential risk at its initial prodromal stage, i.e.,

mild cognitive impairment (MCI), especially at early

MCI (eMCI) stage (Kam et al., 2020). AD involves

the disorder of brain structures and functions while

the brain function of eMCI patients is expected to be

greatly affected. Therefore, many eMCI studies focus on

exploring its functional biomarkers for detecting eMCI

(Chen et al., 2016; Kam et al., 2020; Wang et al., 2020).

Resting state functional magnetic resonance imaging

(rs-fMRI), as an emerging noninvasive neuroimaging

technology, utilizes blood oxygen level-dependent (BOLD)

signals to measure spontaneous brain functional activities.

Recently, many researchers have worked incredibly

hard in detecting the potential diagnostic biomarkers

of eMCI/AD based on rs-fMRI data. In the area of

computer-aided diagnosis, machine learning has become

one of the most important methods to effectively analyze

rs-fMRI data for eMCI detection, which is beneficial to

effectively comprehend the neurological basis of eMCI

(Kam et al., 2020; Zhao et al., 2022d).

Since the human brain is particularly interconnected and

well-organized system, the process of high-level cognition

relying on the interactions among distributed brain regions

of interest (ROIs). To quantify functional interactions

between ROIs, the rs-fMRI data has been employed to

the generate functional connectivity network (FCN) that

the rich information exchange among ROIs (Wang et al.,

2020). Functional connectivity (FC) analysis quantifies the

temporal correlations of BOLD signals across spatially distant

ROIs. According to an increase in the number of rs-fMRI

reports that have concentrated on this research, many brain

disorders including AD are typically accompanied with

changes in the FC patterns. As a result, the analysis of

FCN offers a chance to investigate the connections between

ROIs, which is necessary to find promising biomarkers for

AD diagnosis.

Both conventional machine learning methods such as

support vector machine and deep learning methods such

as recurrent neural network have been widely used in FC

analysis in previous rs-fMRI researches (Kam et al., 2020;

Wang et al., 2020; Zhao et al., 2022d). For instance, Wang

et al. (2020) suggested using a spatial-temporal convolutional-

recurrent neural network to extract FC features for AD

progression prediction. Zhao et al. (2022d) constructed a

multi-view higher-order FCN and extracted features from it

for support vector machine classification. Most studies have

found that FCs based on different ROI-pairs have inconsistent

effects on model outcomes (Dai et al., 2014; Kam et al.,

2020; Wang et al., 2020; Zhao et al., 2022d). Some FCs have

made positive contributions to the model results to varying

degrees, while some FCs played a negative role in the model

outputs. In other words, among many FCN models, some FC

features are unnecessary. Therefore, it is necessary to filter the

features to eliminate redundant features or weaken the negative

effects of irrelevant features on the model outputs. Generally,

classical machine learning methods usually adopt statistical

algorithms (e.g., t-test) to remove features weakly associated

with diseases, while deep learning methods automatically learn

multiple different disease-related feature abstractions from the

input data.

To this end, a novel pairwise FC similarity measure method

based on few-shot learning and self-attention mechanism is

proposed in this paper for eMCI detection. Our motivations

are that (1) since different FC features may have different

contributions to the model results, we employ the self-

attention mechanism to weight FC features, so that FC

feature can obtain an appropriate weight to properly affect

the model outcomes; (2) Recently, metric learning is popular

in classification tasks and has achieved satisfactory results

(Jiang et al., 2021; Lai et al., 2021; Wang Y. et al., 2022).

Therefore, we suggest that use metric learning to measure the

similarity between pairwise FCs for eMCI vs. NC classification

is feasible. Figure 1 illustrates the diagrammatic representation

of the proposed framework, which consists of four parts,

i.e., (1) construction of dynamic FCN, (2) simplified dynamic

FCN, (3) calculation similarity unit, and (4) Siamese network

framework. Specifically, we initially utilize the sliding-window

approach (Wang et al., 2020; Zhao et al., 2022b,c) to

construct a dynamic FCN, as recent progresses have consistently

demonstrated that there is abundant diagnostic information

on the inter-individual variability of FCN. Furthermore, due

to the symmetric nature of the FCN matrix, only the

lower off-diagonal triangular part of the FCN matrix are

retained to avoid redundant computation. Further, the FC

series are weighted by a self-attention mechanism, and the

overall similarity between subjects is achieved by figuring

out the similarity of its pairwise weighted FC time series.

Finally, a popular metric learning/few-shot learning method,

i.e., Siamese network, is trained to measure the similarity

between subjects.

The major advantages of this study are three folds:

• Firstly, the self-attention mechanism is used to

automatically assign weights to FC features.

• Secondly, the proposed model combines a self-attention

mechanism and a few-shot learning strategy to facilitate

feature learning and improves classification performance.

• Thirdly, systematic experiments are conducted on the

large-scale ADNI dataset. The outcomes illustrate that
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the proposed method outperformed current cutting-edge

classification techniques.

2. Materials and methods

The proposed model aims to detect whether subjects suffer

from eMCI. To fulfill this purpose, we develop a pairwise FC

similarity measure model, which consists of dynamic FCN,

pairwise FC similarity measure module and Siamese network,

as shown in Figure 1. Furthermore, experiments are carried

out on the data from Alzheimer’s Disease Neuroimaging

Initiative (ADNI) database to verify the effectiveness of the

proposed model.

2.1. Materials

1) Data acquisition: The ADNI database has been used to

obtain the rs-fMRI data employed in this investigation. A total

of 464 unprocessed rs-fMRI data from 95 MCI patients and 48

normal controls (NCs) were used.

This study’s participants have been scanned with one or

several appointments divided mostly by minimum of half a year,

which is significant since using these 464 scans divided into 154

NC cases and 310 MCI cases (165 eMCI and 145 late MCI cases,

correspondingly) as a result. Since we only used eMCI data and

excluded late MCI data and ultimately used 319 scan cases (154

and 165 for NCs and eMCIs, correspondingly). The scanning

period for each subject is 7 min, and the in-plane imaging

resolution for each scan is 2.29–3.31 mm, slice thickness is 3.31

mm, TE (echo time) is 30 ms, and TR (repetition time) is 2.2–

3.1 s. (resulting in 140 volumes). Table 1 provides a summary of

the 319 subject’s demographic data; values are expressed as the

overall average variance. Male/Female: M/F.

2) Data pre-processing: Using the FSL FEAT software, the

rs-fMRI scans for each person under study were pre-processed

according to a set manner. We mainly processed the remaining

137 volumes using a conventional pipeline, which included slice

timing correction, head motion estimation, bandpass filtering,

and regression of nuisance variables after initially discarding the

initial three volumes during pre-processing for magnetization

equilibrium (i.e., white matter, cerebrospinal fluid, and motion

parameters). Subjects exhibiting head motions more than 2.0

mm in translation or 2.0 in rotation were disqualified. Along

with that, we used T1-weighted MRI to accomplish structural

skull stripping, and we aligned the skull-stripped fMRIs with

the Montreal Neurological Institute (MNI) space. After that,

a Gaussian kernel with a full-widthat-half-maximum (FWHM)

of 6 mm was used to further spatially smooth the fMRI data.

Because doing so might result in more artifacts, we didn’t

undertake scrubbing on data with frame-wise displacements

>0.5 mm. The patients with a frame-wise displacement of more

than 2.5 min (FD > 0.5) were disqualified from further study.

At last, using the AAL atlas, we retrieved the mean rs-fMRI time

series (bandpass filtered from 0.015 to 0.15 Hz) from a collection

of 116 pre-defined ROIs. Finally, the suggested method’s input

data consisted of time series of BOLD signals from all ROIs.

2.2. Dynamic FCN

Letting X = (x1, . . . , xN)T ∈ R
N×M denote the rs-

fMRI scanning series data of a subject, each vector xn ∈

R
M (n = 1, · · · ,N) contains the BOLD measurements of the

n-th ROI at M sequential time points. To construct the

dynamic FCN, the rs-fMRI scanning series is split into several

overlapping subsegments by a sliding window with fixed length,

and furthermore a short-term FCN is constructed for each

subsegment. All the short-term FCNs compose the dynamic

FCN for a subject. The workflow of constructing a dynamic FCN

is shown in Figure 1A.

In detail, the rs-fMRI scanning series are partitioned into

K = ⌊M−w⌋/s+1 overlapping subsegments, where w and s are

the length and the step size of the sliding window, respectively.

k-th
(

1 6 k 6 K
)

window, the short-term FC between the i-

th and the j-th ROIs is calculated by the Pearson’s correlation

coefficient:

FCij(k) = corr
(

xi(k), xj(k)
)

(1)

where xi(k) denotes the sub-series in the k-th segment of

i-th ROI. Thus, the shot-term FCN can be constructed as

D(k) = [FCij(k)] ∈ R
N×N , and accordingly the dynamic

FCN can be represented as D = [D(1), · · · ,D(k), · · · ,D(K)] ∈

R
K×N×N . For two specific ROIs, the FC series FCij =

(

FCij(1), · · · , FCij(k), · · · , FCij(K)
)

reflects the dynamic FC

between i-th and j-th ROIs.

Since each FCNmatrixD(k) is symmetry, only the lower off-

diagonal triangular part is used, i.e.,D(k) ∈ R
N×(N−1)

2 (as shown

in Figure 1B), so that redundant computation can be avoided to

improve the training efficiency.

2.3. Pairwise FC similarity measure

The similarity of FC series between different subjects can

serve as a feature to distinguish subject categories. Intuitively,

the FC time series of ROI pairs between subjects from the same

category should be more similar, while the FC series similarity

between subjects from different categories should be lower.

Therefore, a pairwise FC similarity measure between different

subjects can be used to discriminate between NC and eMCI.

However, according to previous studies (Wang et al., 2020;

Zhao et al., 2022d), FC between different ROI pairs has a distinct
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FIGURE 1

The framework of the proposed model. (A) Construction of dynamic FCN. (B) Simplified FCN matrix. (C) Calculation similarity unit. (D) Siamese

network framework.

contribution degree to eMCI diagnosis. To this end, we assign a

weight to each element of the FCN matrix with a self-attention

mechanism as follows:

Query = WQD

Key = WKD

Value = WVD

(2)

where Query conveys the query, meaning that for each FC series

is a enquiry to be asked, Key conveys the key which each query

compares, Value conveys the value which extracts out the most

important information from each FC series, and WQ, WK , WV

are learnable parameters. The weighted dynamic FCN matrix D̂

is calculated using Equation (3):

D̂ = softmax

(

Query KeyT
√

dk

)

Value (3)

where dk denotes the dimension of Key. In our case,D and D̂ are

the same scale.

After the self-attention mechanism, D̂ is used to calculate

the pairwise FC series similarity of the subjects. As shown

in Figure 1C, the similarity between the FC series of the

corresponding ROIs between the two subjects is calculated and

summed as the similarity between two subjects. Especially, the

similarity is calculated by cosine similarity:

Cosine(F̂C
p
ij, F̂C

q
ij) =

∑K
k=1 F̂C

p
ij(k) · F̂C

q
ij(k)

√

∑K
k=1 F̂C

p
ij(k)

2
√

∑K
k=1 F̂C

q
ij(k)

2
(4)

where F̂C
p
ij in D̂ denotes the weighted FC series between i-

th and j-th ROIs of p-th subject. Due to dynamic FCN is

inherently time sensitive, that is, if the chronological order

of the subnetworks of dynamic FCN changes, the dynamic

FCN will also change (Chen et al., 2016; Zhao et al., 2022d).

Therefore, ensuring the phase matching among the subnetworks

of the subjects’ dynamic FCNs is the key to achieve temporal

consistency comparison. In Equation 4, since the element-wise

computation for cosine similarity, Cosine(F̂C
p
ij, F̂C

q
ij) is invariant

to the order of elements in F̂C
p
ij and F̂C

q
ij. Therefore, the

phases of the subnetworks among subjects are matched, so that

the meaningful comparisons can be made among subjects on

temporal consistency.

2.4. Few-shot learning training strategy

1) Siamese network: In this study, we use the Siamese

network as a concrete implementation of few-shot learning.

The Siamese network consists of two subnetworks that share
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TABLE 1 Demographic information of the studied subjects.

Category Scan # Age (Years) Gender (M/F)

NC 154 75.36± 6.16 67/87

eMCI 165 72.03± 7.26 73/92

parameters, and in our model, the subnetworks consist of

selfattention module. As illustrated in Figure 1D.

2) Dataset partitioning: The dataset used in this paper is

divided into three parts, including training set, validation set and

test set. The training set is used to learn the model parameters by

optimizing the objective function. The training set and test set

are further divided into support set and query set, respectively.

3) Objective function: In this work, the ContrastiveLoss

(Hadsell et al., 2006) is employed as the objective function:

L = (1− y)s2 + ymax(margin− s, 0)2 (5)

where s is the cosine similarity value, margin is the

hyperparameters, and y is the label of a subject pair, if two

subjects from same category, y = 1, otherwise, y = 0. When

y = 1, a smaller loss denotes the similarity between subjects

is bigger, while when y = 0, a smaller loss means that the

similarity between subjects is smaller. Therefore, training the

parameters aims to miminize the objective function. We use

the backpropagation algorithm to train the parameters.

3. Results

3.1. Comparison methods

In the experiments, we compare the proposed method with

the following three methods:

• Support vector machine (SVM): In this method, the

average value of dynamic FC series is regarded as the

features of ROI pairs. Therefore, for each subject, the size

of the feature vector input into SVM is N×(N−1)
2 . In our

case, N = 116.

• Random forest (RF): In this method, the input features are

the same as those fed into the SVM.

• Long short term memory (LSTM): In this method, the

input features are dynamic FCN matrices. Since LSTM is

advantageous for processing sequence data, it is used to

extract features from FC series. Finally, a softmax function

is used for classification, and the objective function uses the

Crossentropy Loss.

3.2. Experimental settings

In this study, the parameters of the sliding window are set as

w = 30, s = 2, that is, the length of the sliding window is 30 time

points or 90 s and the size of each transition is 2 time points or

6 s. In this paper, we report the 2-way (i.e., NC vs. eMCI) 5-shot

evaluation results.

To verify the effectiveness of the proposed method and the

comparison methods, four criteria, i.e., classification accuracy

(ACC), specificity (SPE), positive predictive value (PPV) and

negative predictive value (NPV), are used.

ACC =
TP + TN

TP + TN + FP + FN
(6)

SPE =
TN

TN + FP
(7)

PPV =
TP

TP + FP
(8)

NPV =
TN

TN + FN
(9)

where TP, TN, FP, and FN represent True Positive, True

Negative, False Positive, and False Negative, respectively.

3.3. Classification performance

The classification results of 5-shot in NC vs. eMCI are shown

in Table 2. As Table 2 demonstrates that our method achieves

78% ACC value, 80% SPE value and so on. Obviously, the

proposed method generally achieved better performance than

the comparison methods. For example, in terms of ACC, the

proposed method outperforms the best comparison method

(i.e., LSTM) by 6.33%; and in terms of PPV value, the proposed

method achieved the improvement of 11.60%, compared to the

most effective comparison method (i.e., LSTM). These results

show that explicit modeling of the pair-wised FC similarity

measure in rs-fMRI time series comparing various subjects to

capture eMCI-related ROIs in brain FC is helpful in predicting

the AD progression.

4. Discussion

4.1. Pairwised FC similarity

To discover abnormal patterns of dynamic FC in eMCI

patients, Figure 2 presents four groups (i.e., NC query set and

NC support set, NC query set and eMCI support set, eMCI query
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TABLE 2 Performances of the proposed method and the comparison methods.

Method ACC (%) SPE (%) PPV (%) NPV (%)

RF 66.00 56.00 63.33 70.00

SVM 65.00 50.00 61.54 71.43

LSTM 71.67 60.00 67.57 78.26

Ours 78.00 80.00 79.17 76.92

FIGURE 2

Average similarity matrix between query subjects and support subjects. (A) NC query subjects and NC support subjects. (B) NC query subjects

and eMCI support subjects. (C) eMCI query subjects and NC support subjects. (D) eMCI query subjects and eMCI support subjects.

set and NC support set, and eMCI query set and eMCI support

set) average similarity.

From Figure 2, we can draw several fascinating observations.

First, the cosine similarity values of the query set and

the support set are mostly positive, probably because the

dynamic FC of eMCI patients did not change significantly.

Second, more negative cosine similarities appear when the

query set and support set are from different categories,

which is in line with our expectations. When more negative

similarity values appear, it means that their sum will be

smaller, which is in line with our goal of less similarity

between subjects from different classes. Finally, the four

heatmaps show overall similarities and local differences. This

is because the abnormal FC pattern in eMCI patients occurs
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FIGURE 3

Top 10 pairwised ROIs identified by the proposed method.

between a few ROIs, not the whole brain FC pattern

changes.

4.2. Discriminative pairwised ROIs

To find the most discriminative ROI pairs, we compared the

difference in mean similarity values between different queries on

the same support set. Specifically, we compared the differences

in similarity between two different query sets and support sets

when NC subjects and eMCI subjects were used as support

sets, respectively, with the aim of discovering the FCs that were

different between eMCI query subjects and NC query subjects.

Under the same support set, the ROI pairs with greater similarity

difference are considered as the most discriminative pairwised

ROIs, and the top ten most discriminative ROI pairs are shown

in the Figure 3.

From Figure 3, we can see that the discriminative FCs and

brain ROIs are extended out over both hemispheres which is

a common distribution in previous studies (Wee et al., 2016;

Zhao et al., 2022d), demonstrating the pattern of functional

impairments that is dispersed throughout the whole brains

of eMCI patients. Several brain ROIs, right superior frontal

gyrus (SFGmed.R), left rectus gyrus (REC.L), and right anterior

cingulate gyrus (ACG.R), belong to the default mode network

(DMN), according to previous studies (Xia et al., 2013; Suk

et al., 2016). DMN, which are selected as the ROI in eMCI

identification that are the most discriminative and show a strong

connection with the ROI in the higher-level cognitive functional

networks (Seeley et al., 2007). Several brain ROIs, CRBL3.L,

CRBL10.L, and CRBL10.R, belong to cerebellum regions.

Researches has shown that patients with MCI experienced

structural degenerative changes in some cerebellum regions

(Wee et al., 2016) and disruption of cerebellum functions (Wee

et al., 2016). The functions of left angular gyri (ANG.L) are

maintaining attention, manipulating controls, workingmemory,

making decisions, among many of others (Michael, 2005;

Etienne and Christopher, 2007), and this region has been closely

related to eMCI in previous reports (Liang et al., 2012; Zhou

et al., 2013). The brain ROIs identified by uor method are

consistent with previous reports, indicating the effectiveness of

our proposed method.

5. Conclusions

In summary, a pairwise FC similarity measure method

based on few-shot learning is proposed in this work for eMCI

detection. The unique property of this method is combination

of a self-attention mechanism to automatically learn the weights

of FC features, which is beneficial for disease classification using

whole-brain ROIs. This idea offers an encouraging solution to

identify and categorize brain FCNs, and can also be expanded to

FC-based diagnostic research in other brain diseases.

In this research, we focus on the automatic identification

of eMCI using only rs-fMRI data. Indeed, it is possible to

diagnose eMCI with the help of different imaging modalities,

such as structural MRI and fluorodeoxyglucose PET. It is also

intriguing to use multimodal Data for eMCI detection, which

will be the focus of our upcoming work. In addition, the dataset

is still insufficient even though we use all rs-fMRI scans from all

individuals of ADNI database. In further research, we’ll assess

the proposed methods using a large-scale dataset with more

brain neurological disease like autism spectrum disorder.
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